Accuracy of Spectral Element Method for Wave, Parabolic, and Schrödinger Equations
نویسندگان
چکیده
Related DatabasesWeb of Science You must be logged in with an active subscription to view this.Article DataHistorySubmitted: 1 March 2021Accepted: 27 August 2021Published online: 10 February 2022Keywordsspectral element method, Gauss--Lobatto quadrature, superconvergence, wave equation, parabolic equations, linear Schrödinger equationAMS Subject Headings65M60, 65M15, 65M06Publication DataISSN (print): 0036-1429ISSN (online): 1095-7170Publisher: Society for Industrial and Applied MathematicsCODEN: sjnaam
منابع مشابه
Solution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملA Finite Element Collocation Method for Quasilinear Parabolic Equations
Let the parabolic problem cix, t, u)ut = aix, t, u)uxx + bix, t, u, ux), 0 < x < 1, 0 < / á T, uix, 0) = fix), w(0, t) = gli), ií(1, t) = giit), be solved approximately by the continuous-time collocation process based on having the differential equation satisfied at Gaussian points £,,i and £;,2 in subintervals (x,-_i, x¡) for a function l/:[0, T] —» 3C3, the class of Hermite piecewise-cubic po...
متن کاملWeak Galerkin Finite Element Method for Second Order Parabolic Equations
We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...
متن کاملFinite Element Methods for Parabolic Equations
The initial-boundary value problem for a linear parabolic equation with the Dirichlet boundary condition is solved approximately by applying the finite element discretization in the space dimension and three types of finite-difference discretizations in time: the backward, the Crank-Nicolson and the Calahan discretization. New error bounds are derived.
متن کاملSpectral controllability for 2D and 3D linear Schrödinger equations
We consider a quantum particle in an infinite square potential well of Rn, n = 2, 3, subjected to a control which is a uniform (in space) electric field. Under the dipolar moment approximation, the wave function solves a PDE of Schrödinger type. We study the spectral controllability in finite time of the linearized system around the ground state. We characterize one necessary condition for spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2022
ISSN: ['0036-1429', '1095-7170']
DOI: https://doi.org/10.1137/21m1401760